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Abstract 

This dissertation was conducted as a part of the MSc in Data Science at the International 

Hellenic University.  

The global fight against cardiovascular diseases (CVD) is experiencing a plateau in progress. 

One of the major causes of this issue, is that it is extremely difficult even for health practitioners 

to predict heart diseases as it is an intricate task, demanding a great amount of knowledge and 

experience. In such times, there exists a growing demand to integrate machine learning (ML) and 

data mining within the healthcare system, as by harnessing the wealth of available data, insights 

to society can be very beneficial. 

This research successfully addresses a significant gap in the existing literature, by thoroughly 

examining both machine learning models and neural networks for CVD risk prediction based on 

personal lifestyle factors in a highly imbalanced real-life dataset. We trained multiple classifiers, 

including namely, Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), Gradient 

Boosting (GB), XGBoost (XGB), CatBoost and Artificial Neural Networks (ANN). We used the 

Behavioral Risk Factor Surveillance System (BRFSS) 2021 Heart Disease Health Indicators da-

taset and to tackle the class imbalance challenge, we used methods such as Synthetic Minority 

Over Sampling Technique (SMOTE) Sampling, Adaptive Synthetic (ADASYN) Sampling, 

SMOTE-Tomek, and SMOTE-ENN. 

Based on the findings, we conclude that hybrid models like SMOTE-ENN and SMOTE-

Tomek outperformed the alternative sampling techniques in terms of the sensitivity metric. Our 

proposed implementation includes SMOTE-ENN coupled with CatBoost optimized through Op-

tuna, achieving a remarkable 88% on recall and 82% on the AUC metric. Also, the ANN pro-

posed, exhibited promising results, offering an additional layer of robustness in detecting positive 

cases of cardiovascular diseases. 
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1 Introduction 

World Health Organization (WHO) reported that around 17.9 million people die each 

year due to cardiovascular diseases, making them a primary cause of death across the 

globe [1]. While CVD mortality rates have shown a decline over the past thirty years, this 

`positive trend has started to level off, and there is a potential risk of it reversing unless 

significant and coordinated actions are taken. It is a battle that calls for a transformative 

approach to preventive healthcare, where we must not merely react to illness but antici-

pate it, intercepting the threads of fate before they intertwine into a potentially tragic out-

come. 

The accurate prediction of CVD risk based on personal lifestyle factors plays a crucial 

role in enabling early intervention and implementing preventive measures. However, di-

agnosis is a major problem for practitioners as the nature of the CVDs is highly complex, 

and often confused with signs of aging. Thus, in the past few years, machine learning 

algorithms have emerged as valuable tools in this field, leveraging their capacity to un-

cover intricate patterns and interactions within datasets [47].  

This research focuses on early and efficient detection of heart disease at higher accu-

racy levels using machine learning and deep learning algorithms, based on history of past 

patient records. More specifically, two over-sampling and two hybrid resampling algo-

rithms (SMOTE, ADASYN, SMOTE-Tomek, SMOTE-ENN), along with six ML models 

(Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient Boosting 

(GB), XGBoost Classifier (XGB), CatBoost) and an Artificial Neural Network were used 

for our predictive approach.  

The main contributions of our study are given below: 

• Tackling the class imbalance issue inherent in real-world medical datasets by 

employing various resampling techniques to improve the performance of our 

models. 

• Identifying the maximum compatibility of specific classification algorithms 

with corresponding statistical sampling methods. 
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• Improve the models’ ability to identify positive cases (sensitivity) in such an 

imbalanced dataset, with CatBoost elevating from 4% of recall to an impres-

sive 88%.  

Ultimately, this study effectively addresses a noteworthy research gap by thoroughly 

exploring machine learning and deep learning models for CVD risk prediction based on 

personal lifestyle factors on a highly imbalanced dataset. By comparing model perfor-

mance, resampling methods, identifying influential attributes, and investigating the im-

pact of hyperparameter tuning, the study provides valuable insights for healthcare profes-

sionals and researchers. By shifting our focus from curative medicine to predictive med-

icine, we aspire to create a paradigm shift in healthcare, fostering a world where preven-

tion is no longer an afterthought but an inherent component of our collective well-being. 
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2  Literature Review 

The aim of this section is to provide a comprehensive review of the relevant corpora re-

garding cardiovascular diseases and the crucial role of preventive healthcare in treating 

them. 

2.1 Theoretical Background 

2.1.1 Cardiovascular Diseases (CVDs) 

Cardiovascular diseases (CVDs) refer to a class of diseases that involve the heart or blood 

vessels [2]. They are a significant global health concern and a leading cause of death and 

disability worldwide. CVDs encompass various conditions that affect the heart and blood 

vessels, including coronary artery disease (CAD), heart failure, arrhythmias, valvular 

heart diseases, peripheral vascular disease, and deep vain thrombosis [2]. In figure 1, we 

can see illustrated the most common ones. 

 

Figure 1: Cardiovascular Diseases (CVDs). 
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Coronary artery disease [3] is the most common type of cardiovascular disease and 

occurs when a buildup of plaque appears in the coronary arteries, which supply oxygen-

rich blood to the heart muscle. Over time, the plaque can narrow or block these arteries, 

leading to decreased blood flow, angina (chest pains),  and potential heart-related com-

plications, such as heart attacks (myocardial infarctions). This situation is a medical emer-

gency that requires urgent attention. However, you might have CAD for many years and 

not have any symptoms until you experience a heart attack. That’s why CAD is consid-

ered a “silent killer”.  Risk factors for CAD include high blood pressure, high cholesterol 

levels, smoking, diabetes, obesity, and a sedentary lifestyle. 

Heart failure [13],[14] occurs when the heart's ability to pump blood efficiently is 

compromised, leading to inadequate blood supply to meet the body's demands. It usually 

happens because the heart has become too weak or stiff and it needs some support to help 

it work better. Heart failure is a long-term condition that tends to get gradually worse over 

time and cannot usually be cured, but the symptoms can often be controlled for many 

years. 

The primary signs of heart failure include: 

• experiencing breathlessness even after light activity or while at rest 

• constant fatigue accompanied by exhaustion during physical exertion 

• feeling lightheaded or fainting 

• swollen ankles and legs 

Some people also experience other symptoms, such as a persistent cough, a fast heart rate 

and dizziness. 

Symptoms can develop quickly (acute heart failure) or gradually over weeks or months 

(chronic heart failure). 

 Arrhythmias [15] refer to irregular heart rhythms that can either be too fast (tachy-

cardia) or too slow (bradycardia). They occur due to disturbances in the heart's electrical 

system, which controls the heart's rhythm and rate. Normally, your heart beats in an or-

ganized, coordinated way. Issues with various parts of your heart — or even the blood 

your heart pumps — can affect your heart’s normal rhythm. Having a normal heart rhythm 

matters because your heart supplies your whole body with nutrients and oxygen through 

the blood it pumps. Some types of arrhythmias are harmless and don’t require treatment 

while others can put you at risk for cardiac arrest. Many are in between these two 
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extremes. A healthcare provider can tell you which type of arrhythmia you have and what 

kind of treatment you need, if any. 

Heart valve disease [16] refers to any of several conditions that prevent one or more 

of the valves in your heart from working right. Left untreated, heart valve disease can 

cause your heart to work harder. This can reduce your quality of life and even become 

life-threatening. Conditions like aortic stenosis, mitral regurgitation, and mitral valve pro-

lapse can impair the heart's ability to pump blood effectively. Valvular heart diseases can 

be congenital or acquired and may require surgical intervention in severe cases. 

Peripheral Arterial Disease (PAD) [17] a common circulatory disorder in which 

narrowed arteries reduce blood flow to the limbs, typically the legs. It can result in symp-

toms like leg pain, numbness, or weakness, and in severe cases, it can lead to tissue dam-

age or even amputation. It commonly occurs due to atherosclerosis, where plaque buildup 

narrows and blocks blood flow in the peripheral arteries. PAD can lead to pain, numbness, 

and non-healing wounds in the legs and feet. Left untreated, it may also increase the risk 

of heart attack and stroke.  

Deep vein thrombosis (DVT, also called venous thrombosis) [18] occurs when a 

thrombus (blood clot) develops in veins deep in your body because your veins are injured 

or the blood flowing through them is too sluggish. The blood clots may partially or com-

pletely block blood flow through your vein. Most DVTs happen in your lower leg, thigh 

or pelvis, but they also can occur in other parts of your body including your arm, brain, 

intestines, liver or kidney. 

Myocarditis [19], is an inflammation of the inner muscles of the heart caused by a 

variety of parasitic and microbial infections. It is a rare illness with only a few symptoms 

such as joint discomfort, limb swelling, or fever that cannot be diagnosed from the inside. 

Myocarditis is uncommon, but when it does occur, it is typically caused by an interior 

infection. Infections with microorganisms, fungi, parasites, viruses (most often, viruses 

that cause the flu virus, influenza, or COVID-19), or any other microorganisms can in-

duce myocardial inflammation. Autoimmune diseases such as lupus, sarcoidosis, and oth-

ers can trigger myocarditis due to the immune system’s ability to target any organ in the 

human body, along with the heart, and cause inflammation. Myocarditis can also be 

caused by drug usage, environmental exposure, or dangerous chemicals. 
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2.1.2 CVD risk factors 

Cardiovascular disease (CVD) risk factors are conditions, behaviors, or characteris-

tics that increase the likelihood of developing heart and blood vessel-related diseases. 

These risk factors can be modifiable, meaning they can be changed or managed, and non-

modifiable, meaning they cannot be altered [2]. 

Modifiable Risk Factors 

o High Blood Pressure (Hypertension): Elevated blood pressure puts extra strain on 

the heart and blood vessels, increasing the risk of CVD [44]. 

o High Cholesterol Levels: High levels of LDL cholesterol ("bad" cholesterol) and 

low levels of HDL cholesterol ("good" cholesterol) contribute to the buildup of 

plaque in the arteries, leading to atherosclerosis [44]. 

o Smoking [1]: Tobacco use damages blood vessels, reduces oxygen supply, and 

increases the formation of blood clots. 

o Physical Inactivity [1]: A sedentary lifestyle is associated with obesity, high blood 

pressure, and other risk factors for CVD. 

o Unhealthy Diet [1] : A diet high in saturated and trans fats, salt, and refined sugars 

contributes to the development of CVD. 

o Obesity [1]: Excess body weight strains the heart and is linked to various risk 

factors like diabetes and high blood pressure. 

o Diabetes [44]: People with diabetes have an increased risk of developing CVD 

due to the effects of high blood glucose levels on blood vessels. 

o Stress: Chronic stress can affect behaviors and physiological processes, impacting 

heart health. 

o Alcohol Consumption [1] : Excessive alcohol intake can raise blood pressure and 

contribute to heart muscle damage. 

Non-modifiable Risk Factors: 

o Age: As age increases, so does the risk of cardiovascular diseases. 

o Gender: Men have a higher risk of CVD at a younger age, but women's 

risk increases after menopause. 

o Family History: A family history of heart disease can increase an individ-

ual's risk. 
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o Ethnicity/Race: Certain ethnic groups have higher rates of specific cardi-

ovascular conditions. 

It is crucial to understand that the presence of one or multiple risk factors does not auto-

matically mean one will develop cardiovascular disease [2]. Nonetheless, taking proac-

tive measures such as adopting a healthier lifestyle, using medications as needed, and 

attending regular medical check-ups can substantially decrease the risk and enhance heart 

health. Seeking advice from healthcare experts can offer personalized assessments and 

guidance on preventive approaches. 

2.1.3 Diagnostic tests for CVD 

Diagnostic tests for cardiovascular diseases are essential for assessing the health of the 

heart and circulatory system. These tests help in the early detection, accurate diagnosis, 

and monitoring of various heart conditions. Here are presented the most common CVD 

diagnostic tests conducted by healthcare professionals. 

Electrocardiogram (ECG or EKG) [2]: An ECG measures the electrical activity of the 

heart. It records the heart's electrical signals as waveforms, providing information about 

heart rhythm, rate, and any abnormalities, such as arrhythmias or signs of a previous heart 

attack. 

Echocardiogram [4]: This is an ultrasound test that uses sound waves to create images 

of the heart's structure and function. It assesses the heart's chambers, valves, and pumping 

efficiency. Echocardiography helps in diagnosing conditions like heart valve problems, 

heart failure, and congenital heart defects. 

Stress Test (Exercise ECG or Stress Echocardiogram) [4]: A stress test is performed 

while the patient exercises (e.g., walking or running on a treadmill or riding a stationary 

bike). It evaluates how the heart responds to physical stress and helps detect signs of 

reduced blood flow to the heart muscles, indicating possible coronary artery disease. 

Cardiac CT Scan (Computed Tomography) [4]: Cardiac CT imaging uses X-rays to pro-

duce detailed cross-sectional images of the heart and blood vessels. It can assess coronary 

artery disease, heart structure, and function, as well as detect calcium deposits in the ar-

teries (calcium scoring). 

Cardiac MRI (Magnetic Resonance Imaging) [2][4]: Cardiac MRI uses powerful mag-

nets and radio waves to create detailed images of the heart. It provides information about 
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heart function, tissue characterization, and can detect abnormalities in the heart's struc-

ture. 

Coronary Angiogram (Cardiac Catheterization) [4]: This invasive procedure involves 

threading a catheter through the blood vessels to the coronary arteries. A contrast dye is 

injected, and X-rays are taken to visualize the coronary arteries and identify any block-

ages or narrowing (coronary artery disease). 

Blood Tests [4]: Blood tests can measure specific biomarkers that indicate heart damage 

or strain. Common blood tests include cardiac enzymes (troponin, CK-MB) and B-type 

natriuretic peptide (BNP) or N-terminal pro b-type natriuretic peptide (NT-proBNP) for 

heart failure assessment. 

Tilt table test [5]: Your provider will connect you to an ECG and blood pressure monitor. 

You will be strapped to a table that tilts you from a lying to standing position. This test is 

used to determine if you are likely to have sudden drops in blood pressure (orthostatic 

hypotension) while standing, or slow pulse rates with position changes. You might need 

this test if you often have fainting spells. 

Holter Monitor [6]: It is a portable device worn by a patient that continuously records 

the heart's electrical activity (ECG) for 24 to 48 hours or longer. It helps diagnose irreg-

ular heart rhythms that may not be captured during a standard ECG. 

Event Recorder [5]: Like a Holter monitor, an event recorder is a portable device used 

to record the heart's electrical activity, but it is typically used for a more extended period 

(up to several weeks or months). The patient activates the device when experiencing 

symptoms to capture any abnormalities. 

Implantable loop recorder [5]:This device is about the size of a AAA battery. Your 

provider puts the device under the skin over the heart. The device monitors and records 

heartbeats for up to 3 years. 

2.1.4 The role of data analytics and predictive modeling in preven-
tive healthcare 

As already explained, prevention is key to assist staying healthy and identifying potential 

health issues at an early stage before they lead to complications or become harder to man-

age. Unfortunately, uptake isn’t nearly as robust as it needs to be. One study from 2018 

found that only 8% of adults in the United States who are 35 years and older received the 

preventive care recommended to them [7].  
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This disparity highlights the substantial gap between the potential benefits of preventive 

healthcare and its current utilization. In this context, the role of technology, data analytics, 

and predictive modeling in preventive healthcare has become increasingly vital. These 

strides in technology empower an approach to health management that is not only more 

vigilant but also highly personalized. Through the utilization of data analytics and pre-

dictive models, healthcare practitioners can meticulously examine extensive datasets en-

compassing an array of crucial information, spanning from an individual's medical history 

and lifestyle choices to genetic predispositions and beyond [8]. This comprehensive anal-

ysis enables the discernment of intricate patterns and risk factors, particularly those intri-

cately tied to conditions such as cardiovascular diseases (CVD).  

The prowess of these advanced tools goes beyond mere pattern recognition. It enables the 

precise identification of high-risk individuals before clinical symptoms manifest, thereby 

catalysing the deployment of targeted interventions and meticulously tailored treatment 

strategies [7]. Early detection holds the potential to bring about transformative changes 

in disease management and patient outcomes. By identifying the onset of health issues at 

their nascent stages, healthcare providers can initiate timely and personalized interven-

tions that are tailored to the unique needs of an individual [9]. This not only enhances the 

effectiveness of treatments but also contributes to minimizing the potential complications, 

reducing the burden on healthcare resources, and ultimately improving the overall quality 

of life for patients [9]. Early detection, therefore, not only translates into medical benefits 

but also holds the promise of optimizing healthcare systems and promoting a healthier 

and more resilient population.  

Medical imaging is also being extensively used in the analysis of X-rays, MRIs, CT scans, 

as machine learning and especially convolutional neural networks can accurately identify 

subtle abnormalities that may indicate the very early stages of many diseases like cancer, 

tumors, pneumonia etc. 

Another outcome of particular significance is the potent synergy between technology and 

healthcare through wearable devices and remote monitoring technologies. These innova-

tions empower real-time tracking of individuals' health metrics, facilitating timely inter-

ventions in response to any aberrations, and, notably, mitigating the necessity for frequent 

in-person appointments [10]. This has not only transformed the landscape of healthcare 

delivery but has also fostered an environment conducive to proactive health management. 

Another well-established and prevalent use of predictive analytics in healthcare is 
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identifying patients at high risk of hospital readmission [11]. Forecasting which patients 

may be readmitted after a hospital stay allows clinicians to adjust their post-hospitaliza-

tion treatment strategies, noting that reducing readmissions saves money, preserves 

healthcare resources for new patients and improves patient outcomes [11]. 

Additionally, predictive analytics in the healthcare industry helps identify potential pop-

ulation health trends or outbreaks. The Lancet Public Health journal published a study 

that used predictive analytics to uncover health trends and found that unless alcohol con-

sumption patterns will change in the US, alcohol-related liver diseases will rise, causing 

deaths [12]. When speaking of outbreak predictions, one can’t help but ask, “could pre-

dictive analytics have foreseen the COVID-19 pandemic?”. The answer is yes. BlueDot, 

a Canadian company building predictive analytics and AI solutions, issued a warning 

about the rise of unfamiliar pneumonia cases in Wuhan on December 30, 2019. Only nine 

days later, the World Health Organization released an official statement declaring the 

novel coronavirus emergence [12]. 

 

Figure 2: The role of predictive modelling in preventive healthcare. 

 

However, as we embrace these technological advancements, it's important to address 

challenges related to data privacy, accuracy of predictive models, and equitable access to 

healthcare resources. Balancing the potential benefits of technology with ethical consid-

erations will be instrumental in shaping the future of preventive healthcare. 

2.2 Related work  

Over the past few years, notable advancements have been made in the application of 

Data Mining and Machine Learning methods to predict cardiovascular diseases, with a 
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particular emphasis on early detection and prevention. This progress has been signifi-

cantly influenced by pivotal studies in this field, and in this context, we will examine 

some of these studies, their approaches, results, and limitations.  

Researchers have demonstrated that various machine learning or deep learning mod-

els have the potential to achieve high accuracy on predicting cardiovascular diseases. 

Weng et al. [26] from the very outset in 2017, evaluated four different models utilising 

clinical data sourced from over 300,000 homes in the United Kingdom. The outcomes 

revealed that among the methods examined, the neural network (NN) exhibited the high-

est accuracy in predicting cardiovascular disease, particularly when dealing with an ex-

tensive dataset under analysis, which highlights the need for more detailed and consistent 

electronic health data. Alqahtani et al. [27] devised an ensemble of machine learning 

(ML) and deep learning (DL) models achieving 88.70% accuracy for disease prediction, 

noting that in the end the ML Ensemble model was the most accurate.  Gupta et al. [32], 

designed a machine intelligent framework (MIFH) for predicting heart diseases using the 

factor analysis of mixed data (FAMD) mechanism to derive features from the Cleveland 

dataset. In this study, not only an improved rate of sensitivity was achieved but also the 

MIFH system is able to return the best possible solution among all input predictive models 

considering performance criteria which can be very promising for the future. 

 Authors in [42], suggested a model that combines the Bagging ensemble learning 

method with decision tree and feature extraction with PCA and achieved an amazing 

98.6% of accuracy on a realistic heart dataset. Paragliola and Coronato [33] formulated a 

predictive model tailored to anticipate the probability of cardiac events among hyperten-

sive individuals, utilising ECG data as input. They innovatively combined a convolutional 

neural network with a long short-term memory network, resulting in a hybrid model. This 

integration harnessed time-series data to detect early increases in hypertension occur-

rences in individuals. Mohammed Nasir Uddin [34], focuses on developing an intelligent 

agent for predicting cardiovascular disease using an ensemble-based multilayer dynamic 

system. The proposed model employs five feature selection algorithms, along with an 

advanced ensemble learning model, and achieves high accuracy, with up to 94.16% ac-

curacy and a 0.94 AUC value on a realistic heart dataset. What is worth noting is that this 

multilayer dynamic system can continue the classification process from one layer to an-

other by enhancing its knowledge at each level to get the optimal result.  
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Al Ahdal et al. [35] in 2023 outperformed other machine learning algorithms men-

tioned in the literature section, achieving 96.7% of accuracy using the Random Forest 

classifier and 95.08% using the extreme gradient boost on the Cleveland dataset. Per-

matasari et al [53] achieved an 86% AUC score on predicting Diabetes Mellitus using the 

CatBoost classifier, and along with SHAP values they identified glycose levels and age 

as the most influential features. Most recently, Pasha and Mohamed [36], introduced an 

Advanced Hybrid Ensemble Gain Ratio Feature Selection (AHEG-FS) model that seeks 

to focus on improvement of the accuracy and AUC by selecting highly effective features 

while restoring relevant ones. Nine ML classifiers—AdaBoost, LR, classification via 

clustering (CVC), RF, k-nearest neighbour (KNN), support vector machine (SVM), 

boosted regression tree (BRT), naïve Bayes (NB), and stochastic gradient boosting 

(SGB)—are applied with the proposed AHEG-FS model, which is streamlined on medi-

cal datasets aimed at designing an innovative methodology for enhancing the prediction 

performance, and achieved an impressive 99% AUC after 46.15% features reduced. Ac-

cording to Ahmed et al. [40], methods like CatBoost, Random Forests, and Gradient 

Boosting can accurately foresee almost eight out of ten cardiac arrests. Asif et al. [20], 

also in 2023 achieved an impressive 98.15% accuracy on a Kaggle dataset revealing the 

power of ensemble methods like the Extra Tree Classifier on predicting heart diseases.  

Sharma et al [37], suggested that deep neural networks should be further applied to 

address heart disease diagnosis, achieving 90% accuracy on the Cleveland dataset after 

also using Talos for the optimal hyper-parameters. Tick et al, [25] employs an ANN on 

the same dataset and evaluates its performance for different values of learning rate and 

number of neurons. The findings reveal that the highest accuracy of 80.6% is achieved 

with 0.25 learning rate and 25 neurons. In [38], a deep learning approach is suggested, 

along with the Isolation Forest algorithm for feature extraction and an improved 94.2% 

accuracy for the UCI dataset was achieved. Subramani Sivakannan et al. [39] later, de-

veloped a stacking model comprising both a base learner layer and a meta learner layer, 

yielding an impressive accuracy of nearly 96% on predicting the existence of a heart dis-

ease or not. These compelling outcomes underscores the potential of deep learning ap-

proaches in enhancing predictive performance. 

However, the aforementioned studies on predicting heart diseases involve small and 

relatively balanced datasets.  Here, we will address the problem of imbalance in an ex-

tensive dataset and attempt to identify which classification algorithms are the most 
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suitable for predicting heart diseases. Trigka et al. [28] innovatively employed stacking 

ensemble modelling by combining SVM, NB, and KNN with a 10-fold cross-validation 

synthetic minority oversampling technique (SMOTE) to tackle softly imbalanced da-

tasets, resulting in a robust accuracy of 90.9%. Nishat et al. [29] employed the synthetic 

minority oversampling technique and edited nearest neighbour (SMOTE-ENN) data 

resampling technique, along with hyperparameter optimization and proved an evident en-

hancement of the classifiers performance especially on predicting the survival of patients 

with heart failure. Mahesh et al. [30], also utilised the Synthetic Minority Oversampling 

Technique (SMOTE) to cope with the problem of class imbalance as well as noise present 

in the Cleveland dataset and then with AdaBoost-Random Forest classifier achieved a 

95.47% of accuracy in the early detection of heart disease.  Dutta et al. [31] attempted to 

tackle the imbalance in the NHANES dataset with a two-step approach, involving the 

least absolute shrinkage and selection operator (LASSO) based feature weight assessment 

followed by majority-voting based identification of important features. Working on the 

2015 BRFSS dataset, Teboul [45] tried to make some randomly selected splits of 60% 

not having heart disease to 40% having a heart disease and 50% not having heart disease 

to 50% of having a heart disease and highlighted Neural Networks, Gradient Boosting 

and AdaBoost as the most efficient models when it comes to the accuracy and AUC met-

rics. Authors in [46] decided to under-sample by random sampling the cases without CVD 

and aimed at reducing the consumption of medical resources and therefore the False Pos-

itive cases by building a 3-layered model that iteratively trains models and incorporate 

predictions from previous layers as features.  

Lupague et al. [47] who utilized the 2021 BRFSS data that are used in our study, 

indicated that Logistic Regression should be more involved in the workflow for predicting 

cardiovascular diseases, as it correctly classified 79.18% of people with CVDs and 

73.46% of people healthy and identified sex, diabetes, and general health of the patients 

as the most influential factors to predictions. In their research, Hairani et al. [51] achieved 

a remarkable 30.4% enhancement in model’s sensitivity by integrating the SMOTE-

Tomek algorithm with Random Forest. This outcome, as our study underscores, holds 

paramount significance in the context of heart disease prediction, as we believe is critical 

to minimize false negatives to ensure that high risk individuals will receive the medical 

attention they need, promptly. 
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3 Materials and methods 

In this chapter, we introduce the problem we addressed, outlining our methodology. We 

provide a detailed description of the dataset used, the necessary data preparation, the fea-

ture engineering procedures, and the evaluation metrics used to assess the performance 

of our models. 

3.1 Data Collection  

The data collection process for this study involved accessing the 2021 annual Behavioral 

Risk Factor Surveillance System data (BRFSS) [43], a health-related telephone survey 

which was obtained from the Center for Disease Control (2021). The dataset, comprising 

308,854 records with a total of 304 attributes, was accessed on a local machine for anal-

ysis and model development. However, not all these attributes were utilized to this spe-

cific study, as they were considered irrelevant. Therefore, a subset of 19 attributes was 

deliberately selected and was integrated into the construction of the predictive model, 

which aimed to identify high-risk individuals for cardiovascular diseases (CVD). The 

subset of the BRFSS dataset used, is displayed in Table 1, and it consists of 19 significant 

features. 

Table 1: BRFSS Dataset description. 

FEATURE DESCRIPTION 

General_Health The general health condition of the respondent 

Checkup The period elapsed since the last time the respondent had a routine check-

up 

Exercise Whether the respondent participated in any physical activities during the 

last month or not 

Skin_Cancer Whether the respondent had skin cancer or not 

Other_Cancer Whether the respondent had another kind of cancer or not 

Depression Whether the respondent had a depressive disorder or not 

Diabetes Whether the respondent had a diabetes or not 

Arthritis Whether the respondent had an arthritis or not 
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Sex The respondent’s gender 

Age_Category The category of age that the respondent fall into 

Height_(cm) The respondent’s height measured in cm 

Weight_(kg) The respondent’s weight measured in kg 

BMI The respondent’s body mass index 

Smoking_History Whether the respondent had a smoking history or not 

Alcohol_Consumption The respondent’s reported alcohol consumption 

Fruit_Consumption The respondent’s reported fruit consumption 

Green_Vegetables_ 

Consumption 

The respondent’s reported green vegetables consumption 

Fried_Potato_ 

Consumption 

The respondent’s reported fried potatoes consumption 

Heart_Disease Whether the respondent reported a heart disease or not 

 

3.2 Proposed methodology 

Our study is aimed to predict cardiovascular diseases through the application of ma-

chine learning techniques. We employ a real-world dataset characterized by a significant 

class imbalance, highlighting the importance of maximizing the detection of false nega-

tive (FN) cases, intending to enhance preventive healthcare. Figure 3 provides a visual 

representation of our study’s methodology.  

Specifically, our methodology begins with preprocessing and feature engineering pro-

cedures, which include data cleaning, outlier detection, distribution checks, and data scal-

ing. We also introduce additional features to unveil more intricate patterns within the data. 

Following data preparation, we address the class imbalance issue by employing two over-

sampling techniques (SMOTE and ADASYN) and two hybrid resampling methods 

(SMOTE-ENN and SMOTE-Tomek) on our training data. 

Subsequently, we apply six machine learning algorithms (Logistic Regression, Deci-

sion Tree, Random Forest, Gradient Boosting, XGBoost, and CatBoost) and construct an 

Artificial Neural Network (ANN). We then proceed to the optimization of the models 

through hyperparameter tuning. 

The culmination of our study involves the presentation of the performance results 

obtained through the application of each resampling technique. Our primary focus lies on 
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identifying the most effective combination to maximize the sensitivity metric. This 

heightened emphasis on sensitivity is our contribution to the challenge of class imbalance 

within heart disease data, refining previous studies, which have often increased the false 

negative (FN) cases to achieve higher accuracy levels. 

 

 

Figure 3: Flowchart of the proposed methodology. 

 

3.3 Exploratory data analysis 

Exploratory data analysis plays a vital role in predictive analytics, with the goal of provid-

ing insights into feature interactions, correlations, valuable patterns, and aiding in data 

understanding before making predictions. Various data analysis methods were employed 

to examine the BRFSS dataset and uncover insights about the relationships between dif-

ferent variables and the presence of heart disease. These methods include descriptive sta-

tistics, data visualization, and correlation analysis and some of these will be discussed 

below. 

A preliminary statistical analysis was conducted so that we have a clear picture of the 

distribution of our data. Some important characteristics of our dataset include: 

• There are slightly more females that males in the dataset. 

• The dataset includes patients spanning from various age categories. Notably, the 

group aged 50-54 contains the highest number of patients, with the 55-59 and 60-

64 categories following closely in terms of patient count. There is relatively less 
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participation from young individuals in the survey, which possibly implies that 

the predictive model may be more applicable to older demographics. 

• The majority of patients assess their overall health as "Good," with "Very Good" 

being the next most frequently chosen option. Relatively fewer patients categorize 

their health as "Fair" or "Poor." 

• Most patients underwent a checkup in the previous year. 

• The majority of patients reported not suffering from Diabetes, Arthritis, Cancer 

or Depression. 

• Most of the patients don’t have a smoking history and do exercise regularly.  

Next, it is very important to have a precise comprehension of the distribution of the target 

variable in the dataset. In the BRFSS data, we address a significant class imbalance, as 

shown in Figure 4, only 8.1% of the population participating in the survey reported having 

a heart disease, which can have serious adverse effects on our model. The model may be 

seriously biased towards the majority class of not having a CVD, leading to poor perfor-

mance on identifying high-risk patients.  

 

Figure 4: Percentage of people having a heart disease. 

 

Next, we provide a heatmap that visually represents the correlations between all features 

using color encoding in a two dimensional format. It not only provides a clear visual 

representation of feature – target relationships, but also serves as a foundation for the 

detection of promising features for predictive models and offers insights into the factors 
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influencing CVD risk. Figure 4 shows how features are related to each other, with values 

closer to 1 indicating a robust positive relationship, values closer to -1 indicating a strong 

negative relationship, and values approximately 0 signifying the absence of a relationship. 

As we observe, General Health has a negative correlation with Heart Disease and 

Diabetes, which  suggests that people who rated their general health as poor, are more 

likely to develop one or both of these diseases. Exercise also shows a negative correlation, 

suggesting that exercising can help reduce the risk of developing a disease. Age category 

appears to have a positive correlation with the target variable, which was anticipated, as 

it is non-modifiable risk factor, which has long been recognized as a critical determinant, 

with CVD incidence increasing as individuals grow older. Overall, we see that the most 

influential features for our prediction are General_Health, Age_Category, Diabetes, 

Arthritis and Exercise. This finding is also consistent with the established knowledge in 

the field of CVDs as research in this area has identified these factors as significant 

contributors to the risk and progression of a CVD. 

 

 

Figure 5: Heatmap illustrating correlations among all features. 

3.4 Data preprocessing 

The next step is the preprocessing of the data, which involves making the data more ma-

chine-readable and suitable for modeling.  
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The dataset doesn’t contain any missing values and the output is binary, labeling with 0 

people with no heart disease and with 1 people reporting having a heart disease. First, we 

had to remove 80 duplicated observations detected as they may introduce noise and inac-

curacies in the dataset. When it comes to outliers, there were detected some quite high 

values in the Weight, Height, and BMI variables but we consider them as extreme values 

that are expected and potentially meaningful and therefore, we kept them in the dataset. 

Last, we normalized the input features with MinMaxScaler, so that all features are trans-

formed in the [0,1] range, will all contribute equally to the model fitting, and avoid cre-

ating bias by using different scales. 

 

3.5 Feature Engineering  

We then proceed on some feature engineering to make data more informative and 

relevant to our predictive task. First, we employ binning on the “BMI” feature so that we 

can better interpret it and there may be some pattern identified. Literature shows that if 

your BMI is less than 18.5, it falls within the underweight range, from 18.5 to less than 

25 seems to be in a healthy weight range, from 25 to less than 30, falls within the over-

weight range, and a BMI value higher than 30 indicates obesity [48]. Following, we cre-

ated a variable “Overall_Diet”, which provides a composite score of the individual’s diet, 

taking into account the intake of green vegetables, fruits, and fried potatoes. The con-

sumption of fruits and vegetables contributes positively to the score, whereas the con-

sumption of fried potatoes detracts from it. Then, we aim at trying to identify a potential 

correlation between the bad habits of an individual and developing a heart disease, by 

creating the feature “Substance_Use”, comprising the interaction with the combination of 

smoking and consuming alcohol. We use a different mapping for the smoking variable, 

labelling a smoker with -1 and a non-smoker with 0, so that higher negative values high-

light a person making use of both tobacco and alcohol.  

Next, we convert features like Heart_Disease, Skin_Cancer, Other_Cancer, Depres-

sion, Arthritis, Smoking_History, and Exercise that take only values Yes/No into their 

binary format. Then, we apply label encoding on the ordinal features like General_Health, 

BMI_Category, Age_Category so that we can preserve their ordinal nature, while we ap-

ply one-hot encoding on the rest categorical, nominal features as Sex and Diabetes so that 
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we prevent the model from making assumptions on the relationships between the catego-

ries.  

3.6 Evaluation metrics 

Accuracy 

Accuracy represents the baseline performance of a classification model as it measures the 

overall correctness of the model by calculating the ratio of correctly predicted instances 

to the total ones [56]. It provides a general overview of the model's performance but can 

be misleading when used with imbalanced datasets as the one we are dealing with. A 

model may achieve high accuracy by correctly predicting the majority class while com-

pletely neglecting the minority class. 

Recall / Sensitivity  

Recall quantifies the model's ability to correctly identify positive instances out of all ac-

tual positive instances [23]. This metric holds paramount importance, especially in sce-

narios where the consequences of missing positive cases carry a substantial cost. In our 

specific case, where the primary objective is to identify and mitigate the risk of cardio-

vascular diseases, recall is our focus. As the repercussions of failing to detect individuals 

at risk are significant in this context, we prioritize the optimization of our model with a 

primary focus on maximizing recall. This emphasis ensures that our model excels in cap-

turing a higher proportion of individuals with CVDs, aligning with the critical objectives 

of our healthcare application. 

Precision / Specificity 

Precision assesses the accuracy of positive predictions by calculating the ratio of correctly 

predicted positive instances to all predicted positive instances [30]. Particularly useful 

when minimizing false positives is critical. 

F1-score 

The F1-score is the harmonic mean of precision and recall, providing a balanced measure 

that considers both false positives and false negatives [30]. It provides an assessment over 

the balance between precision and recall. 

Confusion matrix  

A table that summarizes the model's performance by categorizing instances into true pos-

itives, true negatives, false positives, and false negatives. It provides a detailed breakdown 
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of the model's errors and successes, facilitating a deeper understanding of its performance. 

The confusion matrix elements in our study are: true positive (TP), which were patients 

who had heart disease and were correctly diagnosed; true negative (TN), which were pa-

tients who did not have heart disease and were correctly diagnosed; false negative (FN), 

which were patients who had heart disease and were misdiagnosed; and false positive 

(FP), which were patients who did not have heart disease and were misdiagnosed [56]. 

Area Under the Curve (AUC) 

AUC measures the area under the Receiver Operating Characteristic (ROC) curve, illus-

trating the trade-off between true positive (TP) rate and false positive (FP) rate across 

various thresholds [57]. It offers a comprehensive evaluation of a model's ability to dis-

tinguish between classes. 

 

4 Resampling Techniques 

In the realm of data-driven decision-making, the quality and integrity of data are para-

mount. The success of predictive models, regardless of their application, relies heavily on 

the data they are trained on. One of the challenges encountered in real-world datasets is 

data imbalance, which presents a significant barrier to achieving accurate predictions and 

model generalization. Data imbalance occurs when the class distribution within the da-

taset is highly skewed, with the majority class overshadowing the minority class. Tradi-

tional machine learning models, when confronted with imbalanced data, tend to favor the 

majority class, and exhibit suboptimal performance, as they might overlook the subtle 

patterns within the minority class. 

A commonly embraced strategy for addressing severely imbalanced datasets involves a 

technique known as resampling. This approach encompasses the removal of instances 

from the majority class, referred to as under-sampling, and/or the inclusion of additional 

instances from the minority class, which is known as over-sampling. The objective of this 

chapter is to provide a comprehensive understanding of the resampling techniques that 

have emerged as effective tools for mitigating the imbalance challenge. techniques in-

clude Synthetic Minority Over-sampling Technique (SMOTE), SMOTE combined with 
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Edited Nearest Neighbors (SMOTE-ENN), SMOTE combined with Tomek links 

(SMOTE-Tomek), and Adaptive Synthetic Sampling (ADASYN). 

4.1 Synthetic Minority Over-sampling Technique 
(SMOTE) 

SMOTE is an oversampling technique that creates synthetic samples for the minority 

class. This approach mitigates the challenge of overfitting often posed by random over-

sampling. It primarily operates within the feature space, constructing new instances 

through interpolation between closely located positive instances.  

Working procedure 

Initially, the total number of oversampled observations, denoted as N, is established. Typ-

ically, it is chosen to achieve a balanced binary class distribution of 1:1, although this can 

be adjusted on need [49]. The process commences by randomly selecting a positive class 

instance, followed by obtaining its K-nearest neighbours (typically set to 5 by default) 

[49]. Finally, N instances from this set of K neighbours are chosen to generate new syn-

thetic instances. This is achieved by calculating the difference in distance between the 

feature vector and its neighbouring instances using a chosen distance metric [49]. Subse-

quently, this difference is multiplied by a random value in the range (0,1] and added to 

the original feature vector. This process is visually depicted in Figure 6. 

 

Figure 6: SMOTE working procedure. 
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4.2 Adaptive Synthetic Sampling (ADASYN) 

ADASYN represents an extended version of the SMOTE algorithm. Like SMOTE, its 

primary goal is to boost the representation of the minority class by creating synthetic 

instances. However, the difference here is that it works in an adaptive manner, focusing 

on those instances that are more challenging to classify due to their proximity to the de-

cision boundary.  Instances that are harder to classify receive a higher oversampling rate, 

while those that are easier to classify receive a lower rate. Additionally, while SMOTE 

generates new data points strictly along straight lines between neighbouring points, the 

ADASYN algorithm delves deeper into the nearest neighbour area, by considering the 

majority class data points present within that region. Consequently, ADASYN generates 

synthetic samples only if there is a sufficient number of majority samples within the 

neighbouring region, ensuring a more context-aware oversampling technique [54]. This 

adaptability helps in maintaining a balance between boosting the minority class and pre-

venting over-generalization. 

Working procedure 

From the dataset, we first determine the total number of instances in the majority class 

(N-) and the minority class (N+). Then, we establish a predefined threshold value,  

𝑑𝑡ℎ which serves as a limit for the maximum allowable class imbalance [49]. The total 

number of synthetic samples to be generated, is calculated as 𝐺 =  (𝑁− −  𝑁+) multi-

plied by β, where β is equal to (𝑁−/ 𝑁+) [49]. 

For every minority sample 𝑥𝑖, KNN’s are obtained using Euclidean distance, and ratio 

ri  is calculated as  𝛥𝑖 / 𝑘  and further normalized as 𝑟𝑥  <=  𝑟𝑖/ ∑ 𝑟ᵢ [49]. 

Thereafter, the total synthetic samples for each 𝑥𝑖  will be, 𝑔𝑖 =  𝑟𝑥 𝑥 𝐺. Now we iterate 

from 1 to gi to generate samples the same way as we did in SMOTE [49]. 

Figure 7 represents the above procedure: 
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Figure 7: ADASYN working procedure. 

4.3 SMOTE combined with Edited Nearest Neigh-
bors (SMOTE-ENN) 

Hybridization refers to the strategic combination of both under-sampling and over-

sampling methods and has as primary goal the enhancement of the overall performance 

of the classifier models, specifically tailored to the datasets that have undergone these 

procedures. 

SMOTE-ENN leverages the capabilities of both SMOTE and ENN to address class im-

balance effectively. SMOTE augments the underrepresented class, ensuring a more bal-

anced dataset, while ENN specializes in eliminating observations from both classes that 

deviate from their K-nearest neighbour majority class [54]. This hybrid approach ensures 

that the dataset is not only balanced but also free of noisy or misleading data points, thus 

significantly enhancing the quality and reliability of the dataset for subsequent model 

training and improved predictive performance. 

Working procedure  

The algorithm of ENN can be explained as below [50]:  

Given the dataset with N observations, determine K, as the number of nearest neighbours. 

If not determined, then K=3. 

Next, the algorithm identifies the K-nearest neighbours of a given observation within the 

dataset and determines the majority class among these neighbours. 
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If there is a disparity between the class of the observation and the majority class among 

its K-nearest neighbours, the algorithm proceeds to eliminate both the observation and its 

K-nearest neighbour from the dataset. 

This process is repeated iteratively through steps 2 and 3 until the dataset attains the de-

sired proportion of each class, achieving a balanced distribution. 

 

Figure 8: SMOTE - ENN working procedure. 

4.4 SMOTE combined with Tomek links (SMOTE-
Tomek) 

SMOTE – Tomek is also a hybrid algorithm that works by first generating synthetic mi-

nority class instances to balance the data and then Tomek links, an under sampling tech-

nique, is responsible for pinpointing and removing noisy and borderline instances that 

reside near the decision boundary [51]. A Tomek link exists between two instances (data-

points) when they belong to different classes and are each other's nearest neighbors. In 

other words, they are a pair of instances from different classes that are very close to each 

other in the feature space. By removing these links, we eliminate noisy and ambiguous 

data points, leading to a cleaner and more balanced dataset. 
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Figure 9: Augmentation using SMOTE-Tomek. 

5 Machine Learning Models 

Machine Learning, a branch of Artificial Intelligence, empowers applications that gener-

ate precise predictions, without explicit programming for predefined scenarios. In es-

sence, Machine Learning epitomizes the capacity to glean insights and discern patterns 

autonomously, marking a transformative stride in the evolution of computational capa-

bilities. 

5.1 Logistic Regression 

Logistic Regression is considered to be one of the most suitable models for predicting the 

likelihood of a target variable. This method employs the logistic or sigmoid function, 

characterized by an S-shaped curve, which transforms any real-valued input into a value 

within the range of 0 to 1[24]. To classify two classes, 0 and 1, a hypothesis ℎ( 𝜃 ) =

𝜃𝛵𝛸 is formulated, and the classifier's output is thresholded at 0.5 [23]. When the hypoth-

esis value is above 0.5, it signifies a prediction of y = 1, indicating the presence of heart 

disease in the individual. Conversely, if the hypothesis value falls below 0.5, the predic-

tion is y = 0, signifying a healthy person. 
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5.2 Decision Trees 

Decision Tree is one of the most used supervised learning algorithms for both regression 

and classification tasks. These tree-like structures, with branches representing the deci-

sions and the leaf nodes denoting the predicted outcomes offer a clear and interpretable 

way to make predictions on data [52]. The main objective of a decision tree is to encap-

sulate the training data in the most compact tree structure. They work by recursively par-

titioning the data into subsets based on the most informative features, ultimately creating 

a hierarchical set of rules to guide the decision-making process. Decision Trees can often 

be prone to overfitting when they become over-complex, however they can be enhanced 

through techniques like pruning and ensemble methods helping them to generalize better 

to unseen data. 

 

5.3 Random Forest 

The Random Forest algorithm is a powerful ensemble learning algorithm which builds 

upon the concept of decision trees by generating a multitude of individual decision trees 

during training. These trees are constructed with random subsets of the data and features, 

which introduces diversity and reduces the risk of overfitting and then the algorithm com-

bines their predictions to make decisions [51].  Figure 10 illustrates its working process 

in classification. 

 

Figure 10: Working process of Random Forest algorithm. 
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5.4 Gradient Boosting  

Gradient Boosting is a powerful ensemble learning technique, that operates by combining 

multiple weak learners, typically decision trees, into a strong predictive model. The key 

principle behind Gradient Boosting is to iteratively improve the model's performance by 

focusing on rectifying the errors introduced by the prior learners. The main benefit of 

gradient boosting lies in the continuous reduction of the residual error with each iteration 

[34].  

 

Figure 11: Working process of Gradient Boosting. 

5.5 XGBoost Classifier 

Extreme Gradient Boosting is a scalable implementation of the Gradient Boosting frame-

work employed for a wide range of tasks including both regression and classification. It 

focuses on optimization by employing various techniques like parallel processing and tree 

pruning to enhance speed and model accuracy [35]. It also incorporates regularization, to 

reduce overfitting, and allows users to define custom loss functions, offering a high de-

gree of flexibility. 
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Figure 12: Progression of XGBoost from Decision Trees. 

5.6 CatBoost Classifier 

The Catboost algorithm is based on gradient boosted decision trees and usually outper-

forms other gradient boosting methods. Its unique approach involves the use of ordered 

target statistics and ordered boosting, making it particularly well-suited for handling cat-

egorical data in heterogeneous datasets [53]. This approach ensures that the model learns 

from categorical data without relying on one-hot encoding or label encoding. Each suc-

cessive tree in the CatBoost algorithm is built with reduced loss compared to the previous 

ones [53]. It also reduces the need for extensive hyper-parameter tuning, uses categorical 

features directly and scalably, while it also allows  specifying  custom  functions, features 

that make it a valuable tool for machine learning tasks. 

 

5.7 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a class of machine learning models inspired by 

the human brain's intricate network of interconnected neurons. ANNs are comprised of 

interconnected layers of artificial neurons, or perceptrons, which serve as non-linear 

transformation units for input data, enabling them to carry out sophisticated tasks such as 

classification, regression, and pattern recognition. The defining characteristic of ANNs is 

their capacity for parameter adaptation through a process of iterative training, where the 

network adjusts its internal weightings to optimize its performance. Training the ANN 
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involves using a backpropagation network to adjust these weights, which occurs based on 

the disparity between predicted and actual outcomes. These weight updates are then prop-

agated from the output (sink) to the input (source) layer in a feedforward network, aiming 

to minimize errors and produce output close to the target [21]. The fundamental compo-

nent of an ANN is the artificial neuron, which computes its output by aggregating the 

inputs from the previous layer and applying an activation function, generating a numerical 

output within a predefined range, typically between 1 and -1, determined by the function's 

threshold [22]. In figure 13 below we can see a typical representation of feedforward 

neural network. 

 

 

Figure 13: Typical Neural Network layout. 

Although ANNs are usually associated with unstructured data like images, audio, and 

text, in this study we show that when working with structured data they can still provide 

valuable insights and make impressive predictions. 

6 Experimental results 

In this chapter we present the results of our research, including the performance results 

for each classifier after employing each one of the resampling techniques. Our split in all 

experiments was set to 70% for training each model and 30% for testing, stratified. Each 

of the resampling methods is employed only on the training data, so that we avoid data 

leakage from the test set; In this case we not only preserve the integrity of the test set, but 

we also provide more accurate evaluation of the model’s generalization ability. 
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We evaluate the models’ performance using metrics such as accuracy, recall, precision, 

F1-score, the area under the ROC curve (AUC) as well as the confusion matrix so that we 

have a detailed look on the classification of the observations. 

6.1 Machine Learning implementation 

6.1.1 Results interpretation on raw data 

In the beginning of our research, we chose to employ six machine learning algorithms, 

namely, Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), Gradient 

Boosting (GB), XGBoost (XGB) and CatBoost on our raw data. The imbalance present 

poses a significant challenge for the models to correctly identify the positive observations, 

due to the limited representation of individuals who do have a heart disease in the dataset. 

Consequently, it biased the models to classify the majority of the observations as not 

having a heart disease, resulting in seemingly high accuracy while masking poor perfor-

mance on the minority class. Addressing this challenge has been pivotal, and upon miti-

gation, the results exhibit notable improvements, as we will see in the next chapters. 

We apply Stratified 5-fold Cross validation for all the models to obtain a more robust 

estimate of their performance, as by splitting the dataset into multiple folds and train-

ing/evaluating the model on each combination, we get a better sense of how well the 

models generalize to different subsets of the data.  

The evaluation results of the trained ML models on the testing and the training set 

respectively, can be seen in Table 2.  

An initial observation is that Decision Trees and Random Forest seem to have overfit 

to the training data, resulting into poor generalization to unseen data. We can also observe 

the high rate of accuracy (about 92%), almost all the models achieve while they seem to 

have a very poor performance on correctly predicting positive cases.  
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Table 2: Performance results on raw data. 

Model 

 

 

Accuracy/ 

Training  

Accuracy  

Recall/  

Training 

 Recall  

Precision/  

Training 

Precision  

F1-score/  

Training 

F1-score 

AUC/  

Training 

AUC 

Logistic Regression 0.92 / 0.93 0.03 / 0.06 0.47 / 0.51 0.06 / 0.12  0.80 / 0.84 

Decision Tree 0.86 / 1.00 0.23 / 1.00 0.19 / 1.00 0.21 / 1.00 0.57 / 1.00 

Random Forest 0.92 / 1.00 0.03 / 1.00 0.47 / 1.00 0.06 / 1.00 0.80 / 1.00 

Gradient Boosting 0.92 / 0.92 0.05 / 0.05 0.49 / 0.55  0.09 / 0.09 0.83 / 0.84 

XGBoost 0.92 / 0.92 0.05 / 0.09 0.46 / 0.75 0.10 / 0.17 0.83 / 0.88 

CatBoost 0.92 / 0.93 0.04 / 0.11 0.47 / 0.84 0.09 / 0.19  0.83 / 0.87 

 

This low rate of recall, although accompanied by a high accuracy rate, raises concerns 

about the models overlooking a significant portion of positive cases—a matter of para-

mount importance in predictive healthcare analytics. For example, as seen in Figure 14, 

the confusion matrix for Logistic Regression that performed a bit better, reveals 7247 

missed positive cases. In a real-life scenario, such oversights could have profound conse-

quences. Therefore, we've decided to prioritize increasing the sensitivity of our models. 

 

Figure 14: Confusion matrix of Logistic regression performance. 

While default values often yield satisfactory results, the art of hyperparameter tuning un-

veils the potential for more accurate predictions. By reviewing the documentation of each 

algorithm, the bibliography, and by using some optimizing algorithms, we tried to find 

the right parameter grid to improve our models' performance.  
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We conducted an exhaustive grid search utilizing the GridSearchCV algorithm to op-

timize hyperparameters for Logistic Regression, Decision Trees, and Random Forest. 

While effective, this approach proved time-consuming. Following a meticulous explora-

tion, we determined that the hyperparameter set [C = 0.01, penalty = 'l2', solver = 'liblin-

ear'] demonstrated optimal performance for Logistic Regression. For Decision Trees, the 

parameters [criterion = 'entropy', max_depth = 10, min_samples_leaf = 2, min_sam-

ples_split = 10] yielded the best results, while Random Forest showcased peak perfor-

mance with [n_estimators= 475, min_samples_split= 5, min_samples_leaf= 1, 

max_depth= 70, bootstrap= False].  

Transitioning to boosting algorithms, we employed Optuna [55] to efficiently select 

the most effective hyperparameters. Notably, Gradient Boosting exhibited optimal per-

formance with the set [n_estimators = 115, max_depth = 6, min_samples_split = 14, 

min_samples_leaf = 7], while CatBoost demonstrated superiority with [iterations=982, 

learning_rate = 0.014663724595555972, depth=9, l2_leaf_reg= 7.765080164412087, 

auto_class_weights= 'Balanced']. 

Intriguingly, after multiple trials, XGBoost surpassed the results obtained through 

grid searches when assigned the hyperparameter set [scale_pos_weight = 

sum(y_train==0) / sum(y_train==1), eval_metric='logloss', use_label_encoder=False] 

which was manually found. This nuanced exploration underscores the importance of 

adaptive approaches in uncovering optimal configurations for machine learning models.  

The performance results that the models achieved can be seen in Table 3. 

Table 3: Performance results after optimization. 

Model Accuracy/  

Training 

Accuracy 

Recall/ 

Training 

Recall 

Precision/ 

Training 

Precision 

F1 – score/ 

Training 

F1-score 

AUC/ 

Training 

AUC 

Logistic Regression 0.92 / 0.92 0.05 / 0.05 0.52 / 0.53 0.08 / 0.09 0.83 / 0.84 

Decision Tree 0.92 / 0.92 0.05 / 0.07 0.44 / 0.61 0.09 / 0.13 0.80 / 0.86  

Random Forest 0.92 / 1.00 0.04 / 1.00 0.43 /  1.00 0.08 / 1.00 0.81 / 1.00 

Gradient Boosting 0.92 / 0.92 0.04 / 0.07 0.49  / 0.71 0.08 / 0.12 0.83 / 0.86 

XGBoost 0.74 / 0.76 0.75 / 0.87 0.20 / 0.23  0.32 / 0.37 0.82 / 0.89 

CatBoost 0.74 / 0.78 0.77 / 0.85 0.20 / 0.22 0.33 / 0.35 0.83 / 0.87 
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Upon examination of the results, it becomes evident that there is negligible variance 

among the outcomes for the remaining models, except for XGBoost and CatBoost. Nota-

bly, these two models exhibit a noteworthy increase in the achieved recall, with CatBoost 

reaching an impressive 77%, while preserving an excellent accuracy rate. This substantial 

escalation from the initial 4% underscores the significant impact of tuning these models 

with the right hyperparameters. It demonstrates that, when finely tuned, CatBoost can 

identify a considerable number of individuals prone to cardiovascular diseases (CVD) 

with a level of accuracy that goes beyond mere satisfaction. The dual-axis visualization 

in Figure 15 offers insights into how each model navigates the trade-off between overall 

accuracy and the adeptness in capturing positive cases, recall. 

 

Figure 15: Trade-off between Accuracy and Recall. 

Analysing also both the weighted average and the macro average F1-score as seen in 

Table 4, provides valuable insights into the model's performance with and without ac-

counting for the proportion of each class. Notably, the macro average F1 score, even in 

the best-case scenario, is only 0.58. This suggests that the model's performance is not as 

strong when considering both classes equally, regardless of their imbalance. 
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Table 4: Macro and Weighted average f1-score. 

Model Macro avg F1-score Weighted avg F1-score 

Logistic Regression 0.52 0.89 

Decision Tree 0.53 0.89 

Random Forest 0.52 0.89 

Gradient Boosting 0.52 0.89 

XGBoost 0.58 0.80 

CatBoost 0.58 0.80 

 

 

6.1.2 Results interpretation with SMOTE  

 

Next, in our journey to tackle the imbalance in the dataset, we employ the SMOTE 

algorithm, which introduces synthetic instances into the minority class in order to increase 

its representation in the data. 

As we may see in Figure 16, SMOTE generates a sufficient number of observations 

to ensure an equal count between the two classes, resulting in a dataset comprising of 

397.294 observations. 

 

Figure 16: Over sampling with SMOTE. 

The performance results of the trained models on the test set in contrast with their 

performance on the training set after applying SMOTE in the dataset, can be seen in Table 

5.  
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Table 5: Performance results after SMOTE. 

Model Accuracy/ 

Training  

Accuracy 

Recall/  

Training 

Recall 

Precision/ 

Training  

Precision 

F1-score/ 

Training 

F1-score 

AUC/ Train-

ing  

AUC 

Logistic Regression 0.70 / 0.70 0.64 / 0.65 0.16 / 0.17 0.26 / 0.26 0.74 / 0.75 

Decision Tree 0.84 / 0.99 0.27 / 0.99 0.17 / 1.00 0.21 / 1.00 0.58 / 1.00 

Random Forest 0.70 / 0.70 0.64 / 0.65 0.16 / 0.17 0.26 / 0.26 0.78 / 1.00 

Gradient Boosting 0.83 / 0.84 0.39 / 0.40 0.21 / 0.22 0.27 / 0.28 0.77 / 0.77 

XGBoost 0.91 / 0.91 0.11 / 0.16 0.31 / 0.42 0.17 / 0.23 0.80 / 0.84 

CatBoost 0.91 / 0.92 0.08 / 0.14 0.40 / 0.62 0.14 / 0.23 0.81 / 0.87 

 

The application of SMOTE demonstrates a remarkable enhancement in the models' 

capacity to identify individuals at risk of heart disease. Specifically, the recall metric ex-

hibits a substantial surge, escalating from 3% to an impressive 64% when employing Lo-

gistic Regression or Random Forest algorithms. This heightened sensitivity suggests an 

improvement in correctly identifying positive cases, a critical aspect in the context of 

heart disease prediction. 

However, it is essential to note the trade-offs accompanying this improvement. While 

the Recall metric experiences a notable boost, accuracy and precision witness a decline. 

This suggests that while the models become more adept at capturing instances of heart 

disease, there is a corresponding increase in false positives and a potential reduction in 

overall predictive accuracy. 

Interestingly, all three Boosting algorithms don't exhibit a parallel enhancement in 

performance with the introduction of SMOTE.  Despite the synthetic data augmentation, 

they appear to maintain the level of performance they did before over sampling the da-

taset. 

These nuances in performance across different algorithms underscore the complexity 

of utilising SMOTE and its impact on various metrics. 

We then proceed to fine tune our models, and the results achieved are presented in Table 

6. 

 



-46- 

Table 6: Performance results after optimization (SMOTE). 

Model Accuracy/ 

Training 

Accuracy 

Recall/  

Training 

Recall 

Precision/ 

Training 

 Precision 

F1-score/ 

Training 

F1-score 

AUC/ Train-

ing AUC 

Logistic Regression 0.70 / 0.70 0.64 / 0.65 0.16 / 0.17 0.26 / 0.26 0.74 / 0.75 

Decision Tree 0.84 / 0.97 0.27 / 0.78 0.17 / 0.94 0.20 / 0.86 0.58 / 1.00 

Random Forest 0.70 / 0.97 0.64 / 0.65 0.16 / 0.17 0.26 / 0.26 0.78 / 1.00 

Gradient Boosting 0.83 / 0.84 0.39 / 0.40 0.21 / 0.22 0.27 / 0.28 0.77 / 0.78 

XGBoost 0.67 / 0.68 0.80 / 0.89 0.17 / 0.19 0.28 / 0.31 0.80 / 0.85 

CatBoost 0.70 / 0.71 0.79 / 0.80 0.18 / 0.20 0.30 / 0.33 0.81 / 0.87 

 

The results presented in Table 6 indicate that, despite a meticulous grid search to op-

timize their hyperparameters, there was no improvement in the performance of Logistic 

Regression, Decision Trees, and Random Forest, and on top of that the last two are likely 

to have overfit the training data. 

Nevertheless, our boosting algorithms have surpassed our expectations. CatBoost 

achieves an impressive 79%, and XGBoost attains a noteworthy 80% recall. Moreover, 

both models maintain a robust 80% on the AUC metric, emphasizing their resilience and 

discriminative prowess.  As illustrated in the confusion matrix presented in Figure 17, the 

optimized XGBoost model successfully identifies 6078 out of the total 7477 positive 

cases. This outcome underscores the potential use of our method in the healthcare system, 

demonstrating its ability to accurately identify a substantial proportion of positive cases. 
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Figure 17: Confusion matrix of XGBoost&SMOTE. 

6.1.3 Results interpretation with ADASYN 

Distinguishing itself from SMOTE, ADASYN introduces an adaptive element to the 

synthetic data generation process. While SMOTE uniformly augments the minority class 

with synthetic instances, ADASYN takes a dynamic approach. It concentrates its syn-

thetic efforts on regions of the feature space where minority instances are scarce, provid-

ing a more fine-tuned adjustment to the data landscape. 

Illustrated in Figure 18, ADASYN dynamically resamples the dataset, increasing the 

minority class instances to 200721, a considerable augmentation, while it leaves the ma-

jority class untouched, preserving its original count at 198647 instances. 

 

 

Figure 18: Over sampling with ADASYN. 
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The impact of ADASYN on model performance can be seen in Table 7. Examining the 

performance metrics in this table, it is discerned that ADASYN, while bolstering the re-

call of the models, exhibits a slightly more limited effect compared to its oversampling 

counterpart, SMOTE. Specifically Logistic Regression and Random Forest, showcase 

again noteworthy improvement, achieving a commendable 55% on recall, while Decision 

Trees and Boosting algorithms, demonstrate increased accuracy but grapple with a much 

lower recall. 

Table 7: Performance results after implementing ADASYN. 

Model Accuracy /  

Training 

Accuracy 

Recall /  

Training 

Recall 

Precision/ 

Training 

Precision 

F1-score/ 

Training 

F1-score 

AUC/  

Training 

 AUC 

Logistic Regression 0.73 / 0.74 0.56 / 0.56 0.16 / 0.16 0.25 / 0.25 0.73 / 0.73 

Decision Tree 0.84 / 1.00 0.26 / 1.00 0.17 / 1.00 0.20 / 1.00 0.57 / 1.00 

Random Forest 0.73 / 0.74 0.56 / 0.56 0.16 / 0.16 0.25 / 0.26 0.78 / 1.00 

Gradient Boosting 0.83 / 0.83 0.40 / 0.40 0.21 / 0.21 0.27 / 0.28 0.77 / 0.77 

XGBoost 0.90 / 0.92 0.11 / 0.15 0.32 / 0.44 0.16 / 0.23 0.80 / 0.84 

CatBoost 0.92 / 0.92 0.08 / 0.14 0.40 / 0.63 0.13 / 0.23 0.81 / 0.86 

 

 Furthermore, after also examining the models’ performance on the training data, 

a significant disparity in the results becomes evident for Decision Trees when compared 

to their performance on the testing data. The model achieves exceptionally high accuracy 

on the training data but performs poorly on unseen data. This discrepancy raises concerns 

about potential overfitting, suggesting that the model may have captured noise or specific 

patterns that do not generalize effectively beyond the training set.  

We proceed with the optimization of our models, utilizing the hyperparameters recom-

mended by the GridSearchCV and Optuna algorithms. The outcomes of this optimization 

are detailed in Table 8. Notably, XGBoost and CatBoost maintain a commendable AUC 

rate of 80%, while concurrently enhancing their sensitivity to 81% and 80%, respectively, 

surpassing the SMOTE’s performance on the same models. Also, despite the improve-

ment in F1-score compared to previous results, there is still room for enhancement. 
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Table 8: Performance results after optimization (ADASYN). 

Model Accuracy/ 

Training  

Accuracy 

Recall/ 

Training  

Recall 

Precision/ 

Training 

Precision 

F1-score/ 

Training 

F1-score 

AUC/ 

Training 

AUC 

Logistic Regression 0.75 / 0.76 0.50 / 0.50 0.16 / 0.16 0.25 / 0.25 0.71 / 0.72 

Decision Tree 0.85 / 0.98 0.23 / 0.78 0.18 / 0.88 0.20 / 0.82 0.59 / 1.00 

Random Forest 0.74 / 0.76 0.56 / 0.50 0.16 / 0.16 0.25 / 0.25 0.78 / 1.00 

Gradient Boosting 0.83 / 0.90 0.41 / 0.17 0.21 / 0.27 0.27 / 0.21 0.77 / 0.79 

XGBoost 0.67 / 0.68 0.81 / 0.89 0.17 / 0.18 0.28 / 0.31 0.80 / 0.85 

CatBoost 0.70 / 0.71 0.80 / 0.90 0.18 / 0.20 0.30 / 0.34 0.81 / 0.87 

 

 

6.1.4 Results interpretation with SMOTE-Tomek 

Following, we employed the SMOTE-Tomek algorithm, which is a hybrid resampling 

method, commonly used to handle the imbalance in the data. With this process, as seen 

in Figure 19,  the minority class is augmented into 198031 instances, offering a substantial 

reinforcement to its representation within the dataset, while simultaneously, the Tomek 

Links algorithm identifies and eliminates instances that form Tomek Links - pairs of in-

stances of different classes that are closest to each other, facilitating a focused reduction 

in the majority class. 

 

Figure 19: Hybrid resampling with SMOTE-Tomek. 

We then apply our machine learning models, and the results can be seen in Table 9. 
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Table 9: Performance results after implementing SMOTE-Tomek. 

Model Accuracy/ 

Training 

Accuracy 

Recall/ 

Training 

Recall 

Precision/ 

Training 

Precision 

F1-score/ 

Training 

F1-score 

AUC/ 

Training 

AUC 

Logistic Regression 0.70 / 0.70 0.63 / 0.61 0.16 / 0.16 0.25 / 0.25 0.74 / 0.74 

Decision Tree 0.84 / 1.00 0.27 / 1.00 0.17 / 1.00 0.21 / 1.00 0.58 / 1.00 

Random Forest 0.70 / 0.70 0.63 / 0.61 0.16 / 0.16 0.25 / 0.25 0.78 / 1.00 

Gradient Boosting 0.83 / 0.84 0.40 / 0.40 0.21 / 0.22 0.28 / 0.28 0.77 / 0.78 

XGBoost 0.90 / 0.91 0.12 / 0.16 0.31 / 0.43 0.17 / 0.24 0.80 / 0.84 

CatBoost 0.91 / 0.92 0.08 / 0.15 0.40 / 0.63 0.14 / 0.24 0.81 / 0.87 

 

Now that our data is appropriately balanced, we find considerable satisfaction in the 

91% accuracy achieved by boosting algorithms. Nevertheless, the 8% recall rate indicates 

a significant limitation, as the models tend to categorize all observations into the majority 

class, masking their ability to effectively identify positive cases. In light of this, we favour 

the performance of Logistic Regression and Random Forests, striking a balance between 

relatively high accuracy and a satisfactory level of recall. 

Following the fine-tuning of the models, as seen in Table 10, we see that unfortunately 

Decision Trees overfit to the training data, Logistic Regression and Random Forest drop 

their performance, but interestingly, the noteworthy performance of CatBoost and 

XGBoost emerges. Their impressive consistency between the testing and training sets 

underscores its exceptional generalization ability. CatBoost not only attains an impressive 

70% accuracy but also excels in identifying positive cases, achieving an 81% recall rate. 

Likewise, XGBoost outperforms all models and achieves an 82% in its sensitivity, which 

is the highest result until now. These results underline the effectiveness and robustness of 

boosting algorithms in handling the intricacies of the dataset.  
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Table 10: Performance results after optimization (SMOTE-Tomek). 

Model Accuracy/ 

Training Accu-

racy 

Recall/ 

Training Re-

call  

Precision/ 

Training Pre-

cision 

F1-score/ 

Training  

F1-score 

AUC/ 

Training 

AUC 

Logistic Regression 0.76 / 0.76 0.49 / 0.50 0.16 / 0.17 0.25 / 0.25 0.72 / 0.73 

Decision Tree 0.86 / 0.98 0.21 / 0.79 0.20 / 0.93 0.20 / 0.85  0.59 / 1.00 

Random Forest 0.76 / 0.76 0.49 / 0.50 0.16 / 0.17 0.25 / 0.25 0.78 / 1.00 

Gradient Boosting 0.83 / 0.84 0.40 / 0.40 0.21 / 0.22 0.28 / 0.28 0.77 / 0.78 

XGBoost 0.67 / 0.68  0.82 / 0.89 0.17 / 0.19 0.28 / 0.31 0.80 / 0.85 

CatBoost 0.70 / 0.71 0.81 / 0.90 0.18 / 0.21 0.30 / 0.34 0.81 / 0.87 

 

6.1.5 Results interpretation with SMOTE-ENN 

Finally, we apply the SMOTE-ENN hybrid resampling algorithm on the BRFSS data, 

which combines synthetic data generation and data refinement. This method strategically 

augments the minority class to 193714 instances, significantly bolstering its representa-

tion in the dataset, while concurrently, it undertakes a pruning of the majority class, re-

ducing its observations to 133109 from the original count of 198647, as illustrated in 

Figure 20.  

 

Figure 20: Hybrid resampling with SMOTE-ENN. 

The performance results after applying the SMOTE-ENN algorithm are presented in Ta-

ble 11.  
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Table 11: Performance results after implementing SMOTE-ENN. 

Model Accuracy/ 

Training  

Accuracy 

Recall/ 

Training 

Recall  

Precision/ 

Training 

Precision 

F1-score/ 

Training  

F1-score 

AUC/ 

Training 

AUC 

Logistic Regression 0.60 / 0.61 0.79 / 0.80 0.14 / 0.15 0.24 / 0.25 0.75 / 0.76 

Decision Tree 0.79 / 0.91 0.42 / 1.00 0.17 / 0.48 0.24 / 0.65 0.62 / 0.95 

Random Forest 0.60 / 0.61 0.79 / 0.80 0.14 / 0.48 0.24 / 0.25 0.79 / 0.99 

Gradient Boosting 0.74 / 0.74 0.67 / 0.68 0.19 / 0.19 0.29 / 0.30 0.78 / 0.79 

XGBoost 0.85 / 0.86 0.42 / 0.50 0.25 / 0.30 0.31 / 0.38 0.80 / 0.84 

CatBoost 0.87 / 0.89 0.37 / 0.48 0.28 / 0.36 0.32 / 0.41 0.81 / 0.86 

 

Upon examining these findings, a noteworthy improvement is evident across all mod-

els in terms of recall, while also a quite good accuracy rate is preserved, following the 

application of the SMOTE-ENN technique. For instance, Gradient Boosting exhibits a 

substantial increase from 4% to 67% without any additional optimization. Additionally, 

it is remarkable to note the impressive 79% recall achieved by both Logistic Regression 

and Random Forest. Additionally, with our dataset now balanced, we can delve into the 

AUC metric. It reveals that nearly all our models exhibit a commendable ability to cor-

rectly classify instances, with Random Forest notably achieving an impressive 80%. 

Proceeding to the optimization of the models, we carefully selected hyperparameters 

tailored to our data, giving priority to those assigning different weights to each class. This 

strategic choice creates a heightened focus on the minority class, which is particularly 

significant in our case. The results, as depicted in Table 12, are promising. Notably, we 

avoided overfitting across all models, as evidenced by the similar performance on both 

the training and test sets. Moreover, we attained the peak performance for each model. 

CatBoost, in particular, surpassed expectations with a remarkable 88% recall, coupled 

with a decent accuracy rate and an impressive 82% AUC rate. 
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Table 12: Performance results after optimization (SMOTE-ENN). 

Model Accuracy/ 

Training Accu-

racy 

Recall/ 

Training Re-

call  

Precision/ 

Training Pre-

cision 

F1-score/ 

Training  

F1-score 

AUC/ 

Training 

AUC 

Logistic Regression 0.66 / 0.66 0.71 / 0.73 0.15 / 0.16 0.25 / 0.26   0.74 / 0.75 

Decision Tree 0.79 / 0.91 0.41 / 0.99 0.17 / 0.48 0.24 / 0.65 0.62 / 0.95 

Random Forest 0.66 / 0.66 0.71 / 0.73 0.15 / 0.16 0.25 / 0.26 0.78 / 0.98 

Gradient Boosting 0.74 / 0.74 0.67 / 0.68 0.19 / 0.19 0.29 / 0.30 0.78 / 0.79 

XGBoost 0.61 / 0.61 0.87 /  0.94 0.15 / 0.17 0.26 / 0.28 0.80 / 0.85  

CatBoost 0.63 / 0.63 0.88 / 0.94 0.16 / 0.17 0.27 / 0.29 0.82 / 0.86 

 

This outcome underscores the efficacy of combining CatBoost with the hybrid SMOTE-

ENN algorithm, especially for healthcare practitioners dealing with real-life imbalanced 

data. As illustrated in Figure 21, this combination proves to be highly beneficial, enabling 

the identification of a substantial number of positive cases—an advantageous outcome 

for the healthcare system. 

 

Figure 21: Confusion matrix of the peak performance (CatBoost&SMOTE-ENN). 

 

6.2 Deep Learning implementation  

The inherent complexity and non-linearity of Artificial Neural Networks (ANNs) 

have led to their adoption in tasks that demand the extraction of intricate patterns and 

representations from complex data types, and therefore has traditionally been 
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synonymous with unstructured data, such as images, audio, and natural language [58]. 

The deterministic nature of structured data seemingly contradicts the flexibility and 

adaptability that ANNs offer. Nevertheless, in our exploration we will showcase how 

ANNs, when properly harnessed, can surpass the performance of traditional machine 

learning algorithms on structured data. 

Model architecture 

The foundation of our model lies in the sequential arrangement of densely connected lay-

ers. Each layer is tailored to capture distinct features and patterns from the input data, 

transforming them into increasingly abstract representations. The architecture details of 

our proposed ANN can be seen in Figure 22. 

Input Layer 

The initial layer consists of 128 units, each equipped with a Rectified Linear Unit (ReLU) 

activation function. ReLU is chosen for its ability to introduce non-linearity into the 

model, allowing it to learn complex relationships within the input data [59]. The number 

of units is determined manually based on the complexity of the dataset and the need for 

the network to extract diverse features. 

Dropout Layer (Regularization) 

Following the first dense layer, a dropout layer with a dropout rate of 0.5 is introduced. 

Dropout is a regularization technique that randomly drops a fraction of the connections 

during training, preventing the model from relying too heavily on specific features and 

enhancing its generalization capabilities [60]. The chosen dropout rate strikes a balance 

between mitigating overfitting and retaining valuable information. 

Second Dense Layer 

The second dense layer further refines the learned features with 64 units and a ReLU 

activation function. The reduced number of units in this layer allows for a gradual transi-

tion from the expansive feature space captured by the initial layer to more concise and 

informative representations. 

Second Dropout Layer  

To fortify the model against overfitting, a second dropout layer is inserted with the same 

dropout rate of 0.5. The sequential arrangement of dropout layers serves as a protective 

mechanism, encouraging the network to learn robust and transferable features [60]. 

Output Layer 
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The final layer, comprising a single unit and a sigmoid activation function, transforms the 

learned features into a probability score. The sigmoid activation is apt for binary classifi-

cation tasks, producing a probability indicating the likelihood of the presence of a cardi-

ovascular disease. 

 

Figure 22: Architecture details of proposed ANN model. 

Class imbalance 

 To address the class imbalance, present in our dataset, except for the resampling al-

gorithms we put into use, we assign a class weight to the positive class during model 

compilation, emphasizing on the importance of correctly predicting cases at high risk for 

CVDs. On the raw data, the class weight for the positive class is set to 10, while on the 

methods using resampling the class weight for the positive class is set to 2. 

Loss Function 

 The model is compiled using the Adam optimizer, a popular choice for its efficiency 

in updating weights during training. Network output was then compared to the desired 

output, and error was calculated using binary cross-entropy loss, as shown in (1):  

𝐿𝐵𝐶𝐸 =  −
1

𝑛
∑ (𝑦𝑖 log 𝑦𝑖̂)

𝑛
𝑖=1 + (1 −  𝑦𝑖) log(1 − 𝑦𝑖̂)                           [22](1) 

Early stopping 

In our ANN training, the implementation of early stopping is executed through the 

EarlyStopping callback provided by the Keras library. The callback is configured to 

monitor the 'val_loss’, the loss on the validation set. Training is halted if the validation 

loss fails to improve over a predefined number of epochs, known as the patience param-

eter, which we set to 10. This effectively prevents the model from excessively tailoring 

its parameters to the training data, ensuring a more generalized and robust model. 
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Prediction and evaluation 

 Once trained, we employ our model to make predictions on the training and the test-

ing sets, and the predicted probabilities are thresholded at 0.5 to obtain binary predic-

tions. The model’s performance when employed with each of the resampling algorithms 

is presented in Table 13. 

Table 13: Performance results for the ANN. 

ANN Accuracy/ 

Training  

Accuracy 

Recall/ 

Training 

Recall 

Precision/ 

Training 

Precision 

F1-score/ 

Training  

F1-score 

AUC/ 

Training 

AUC 

Raw data 0.74 / 0.73 0.78 / 0.80 0.20 / 0.21 0.32 / 0.33 0.76 / 0.77 

SMOTE 0.58 / 0.78 0.80 / 0.93 0.14 / 0.71 0.23 / 0.81 0.68 / 0.77 

ADASYN 0.63 / 0.77 0.74 / 0.92 0.15 / 0.70 0.24 / 0.80 0.68 / 0.76 

SMOTE-Tomek 0.62 / 0.77 0.77 / 0.94 0.15 / 0.70 0.24 / 0.80 0.69 / 0.77 

SMOTE-ENN 0.54 / 0.83 0.87 /  0.96 0.14 / 0.79 0.24 / 0.87 0.69 / 0.80 

 

The results taken, reveal several noteworthy observations. Firstly, our successful han-

dling of overfitting stands out as a significant achievement, particularly in the context of 

applying Artificial Neural Networks (ANN) to structured, non-complex data—a major 

challenge in such scenarios. 

Upon closer examination, it becomes apparent that, on the raw data, our ANN sur-

passes the performance of all previously employed machine learning (ML) models. Im-

pressively, it attains a recall rate of 78%, while matching the accuracy rate achieved by 

the top-performing ML model at 74%. This accomplishment underscores the efficacy of 

our ANN in extracting meaningful patterns from the data. 

Notably, the combination of our ANN and the SMOTE-ENN hybrid resampling al-

gorithm yields exceptional results, reaching its peak recall rate of 87%. This synergy 

demonstrates the effectiveness of incorporating data resampling techniques to enhance 

the performance of our ANN. 

While our ANN, coupled with the SMOTE, ADASYN, and SMOTE-Tomek algo-

rithms, falls short of outperforming our optimized boosting algorithms, it is noteworthy 

that it achieves a performance close to theirs. This implies that, even in scenarios where 
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boosting algorithms maintain a slight edge, our ANN remains a competitive and promis-

ing rival. 

The nuanced interplay between our ANN and various resampling techniques show-

cases its adaptability and potential to deliver robust performance across diverse data 

types. 

7 Discussion 

Our investigation into predicting cardiovascular diseases on a real-life dataset, 

through both machine learning and deep learning algorithms, unfolds critical findings 

explained in this comprehensive evaluation. We employed 6 ML models, Logistic Re-

gression, Decision Trees, Random Forest, Gradient Boosting, XGBoost, and CatBoost on 

our raw data, and we uncovered initial challenges tied to dataset imbalance. Despite 

achieving high overall accuracy, our models struggled to effectively identify positive 

cases, having a notably suboptimal recall rate of only 4%. This discrepancy raised con-

cerns about the models' sensitivity in detecting individuals with heart-related conditions, 

prompting an in-depth investigation into mitigating bias and enhancing the models' per-

formance in identifying positive cases.  

Our optimization strategy involved a detailed hyperparameter tuning process using 

GridSearchCV for Logistic Regression, Decision Trees and Random Forests and Optuna 

for Gradient Boosting and CatBoost. XGBoost demonstrated the importance of adaptive 

approaches, outperforming grid searches with manually found hyperparameters. 

In the subsequent phase of our investigation, we focus on a resampling process, ap-

plying various oversampling and hybrid sampling algorithms to achieve class balance. 

Initially, two oversampling algorithms, SMOTE and ADASYN, were implemented. 

SMOTE showcased a remarkable improvement in all models' performance, especially 

when coupled with XGBoost, achieving 67% accuracy and an impressive 80% recall rate. 

ADASYN, while not initially surpassing SMOTE, exhibited enhanced performance after 

fine-tuning, with XGBoost achieving an 81% recall rate with the same as previously ac-

curacy rate. 
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 Moving forward, we explored two hybrid resampling algorithms, SMOTE-Tomek 

and SMOTE-ENN, strategically combining under-sampling and oversampling methods. 

While SMOTE-Tomek faced challenges with overfitting in certain models, it proved ef-

fective with boosting algorithms. XGBoost achieved an 82% recall rate, and CatBoost 

reached 81%. SMOTE-ENN demonstrated immediate improvements in the models' gen-

eralization ability and effective detection of positive cases. The combination of SMOTE-

ENN and CatBoost showcased our study’s peak performance, achieving an 88% recall 

rate, indicating a minimal miss rate for positive cases in the dataset.  

Finally, we demonstrated the efficacy of Artificial Neural Networks (ANN) for struc-

tured data when handled appropriately. The proposed ANN, coupled with the SMOTE-

ENN algorithm, achieved an 87% recall rate and 70% on the AUC metric, and on the raw 

data it outperformed all our ML models even when optimized, affirming its potential as 

a valuable tool for healthcare practitioners dealing with imbalanced data. 

In Figure 23, we present our recommended optimal resampling algorithm–predictive 

model combinations, providing a comprehensive overview of their achieved recall rates. 

 

Figure 23: Model Recall Performance for Optimal Combinations. 

 



  -59- 

8 Conclusion and Future Work 

This study effectively tackled the challenge of class imbalance within a real-life dataset. 

By systematically comparing Machine Learning (ML) and Deep Learning (DL) algo-

rithms, coupled with various resampling techniques, we discerned the optimal combina-

tion that maximizes the recall metric. 

8.1 Conclusion 

In conclusion, our journey through the prediction of cardiovascular diseases using a 

real-life dataset, explored through both machine learning and deep learning algorithms, 

has demonstrated critical insights crucial for healthcare practitioners and researchers 

alike. The evaluation results presented in the preceding chapter underscore the nuanced 

challenges inherent in dealing with imbalanced datasets and the profound implications 

for the accurate identification of positive cases, when their representation is limited in the 

dataset. 

Our initial findings revealed a trade-off between high accuracy and poor recall for 

positive cases, mostly because of a major imbalance present, prompting a meticulous in-

vestigation into addressing this challenge. Our optimization strategies, encompassing hy-

perparameter tuning and hybrid resampling techniques, served as pivotal interventions to 

enhance model performance and sensitivity. Five different experiments were conducted 

separately for each of the resampling algorithms to find the best-performing model. We 

implemented two over-sampling and two hybrid resampling, algorithms, to address the 

imbalance in the dataset and used 6 machine learning models as well as an artificial neural 

network for our predictions. These interventions showcased marked improvements, with 

optimized boosting algorithms along with hybrid resampling methods achieving impres-

sive recall rates, with CatBoost specifically coupled with SMOTE-ENN achieving a re-

markable 88%. Furthermore, the integration of Artificial Neural Networks (ANN) into 

our study demonstrated their capacity to excel in handling structured imbalanced data, 

offering an additional layer of robustness in detecting positive cases in the healthcare 

sector. 

Moreover, it is imperative to underscore the indispensable role of proper electronic 

health records (EHR) in excelling predictive analytics for healthcare. The wealth of 
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structured and unstructured data within EHR has proven instrumental in constructing a 

comprehensive analysis of patient health profiles. The information encapsulated in EHR 

not only enhances the predictive capabilities of our models but also facilitates a holistic 

comprehension of individual health trajectories, laying the groundwork for a robust pre-

vention system. 

As we conclude this chapter of our research, it becomes evident that the synergy be-

tween advanced analytics, innovative algorithms, and the depth of information within 

EHR is the cornerstone of transformative breakthroughs in predictive healthcare. 

 

8.2 Future Work 

There are several promising avenues to explore when building upon the foundations 

laid in our study.  Firstly, as mentioned earlier, the quality of the EHR can have a signif-

icant impact on the performance of the proposed models. The integration of more diverse 

and extensive datasets could enhance the generalizability of predictive models and im-

prove their ability to identify patients at high-risk. Additionally, investigating the impact 

of incorporating genetic and biomarker data would provide a more holistic understanding 

of cardiovascular disease risk, as there is existing evidence that strongly suggests that 

there is a potential correlation. 

Exploring advanced machine learning techniques, and deep learning architectures, the 

application of transfer learning could significantly enhance the predictive capabilities of 

our models. By leveraging knowledge gained from pre-trained models on structured data, 

on health-related domains, we can potentially improve the performance of CVD risk pre-

diction. Also, the exploration of explainable AI methods could address the interpretability 

challenges associated with complex models, fostering greater trust and adoption in clini-

cal domains and assist even further, health practitioners, understand the reasons behind 

the models’ decision making.
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